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Improved low-order model for shear flow driven by Rayleigh-Bénard convection
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An analysis of the low-order model for two-dimensional fluid flow with shear proposed by Drake
et al. [Phys. Fluids B 4, 488 (1992)] is undertaken. Their two-term model for the shear is an
extension of the model put forth by Howard and Krisnamurti [J. Fluid Mech. 170, 385 (1986)],
and is shown to be an improved model in the sense that it respects certain conditions for vorticity
conservation arising directly from the Boussinesq equations. In so doing, it provides a more realistic
model of the physics involved. An important consequence of the improved model is the appearance
of cutoff values for the shear instability that are dependent upon the aspect ratio of the interacting
Rayleigh-Taylor cell. Numerical results are presented as confirmation of this prediction.

PACS number(s): 03.40.Gc, 47.20.Ky, 47.27.Pa

I. INTRODUCTION

The works of Howard and Krishnamurti have served
as the foundation for the study of two-dimensional shear
flow. In particular, the truncated Fourier model and its
analysis presented in their paper “Large-scale flow in tur-
bulent convection: a mathematical model” [1] is often im-
plemented as the basis for low-order studies of the Boussi-
nesq equations. Their model for the stream function and
temperature perturbation begins with the three Fourier
components that give rise to the Lorenz equations. These
support a Rayleigh-Taylor (R-T) instability with single
vertical (z) and horizontal (z) modes in a horizontally
infinite channel of incompressible fluid with fixed bound-
aries top and bottom over which a constant temperature
difference is maintained (Fig. 1). Based on their obser-
vation of a large scale horizontal flow witnessed during
experimental work [2], Howard and Krishnamurti added
a sin(z) term to the model of the stream function plus a
complementary term to the stream function and temper-
ature perturbation.

The authors placed a clear caveat on their work regard-
ing the lack of higher-order R-T modes and the resulting
disconnect between the model and real-world observa-
tions. However, a recent study of driven vortices [3,4] in-
dicates that the Howard-Krishnamurti (H-K) model may
be inappropriate for the study of even single mode phe-
nomena due to the absence of a higher-order shear mode
under certain nondegenerate parameter conditions, viz.,
for elongated (low aspect ratio) R-T modes. We will
use the horizontal wave number for the lowest-order R-T
mode being modeled, a, as the measure of aspect ratio
(2L./L,).

The H-K model has served as a touchstone for re-
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cent work in two-dimensional magnetoconvection in the
Boussinesq approximation. Building on the hydrody-
namic simulations of Ginet and Sudan [5], Lantz [6] has
performed extensive numerical studies for a conducting
fluid in a horizontal magnetic field. Using an extension of
the H-K equations which included magnetic fields, Lantz
found his results predicting sheared convection compared
favorably to the low-order model in the case where the
Prandtl number =~ 2 and @ = 2. Hughes and Proctor
[7] have proposed a simplification to the sixth order H-
K model justified in the limit of small Prandtl number
and large a. Their resulting third order system has been
utilized by Rucklidge and Mathews [8] and Mathews et
al. [9] to map the bifurcations occurring in Boussinesq
magnetoconvection in a vertical magnetic field.

The anomalous behavior of shear flow for low aspect
ratio R-T modes was observed when Drake et al. [3] at-
tempted to link certain tokamak plasma edge effects to
the generation of shear flow. In that paper the additional
shear term sin(3z) was introduced, justified by consider-
ing the requirement for vorticity conservation in the in-
viscid Boussinesq equations. Finn et al. [4] elaborated
on and extended that work, showing that the shear in-
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FIG. 1. Representation of a  two-dimensional
Rayleigh-Taylor convective cell, constrained by impenetrable
walls in the vertical (z) direction between which a constant
temperature difference is maintained and periodic boundary
conditions in the horizontal (z) direction.
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stability was either inviscid or viscous depending on the
aspect ratio of the R-T cell.

In this paper, we will motivate the requirement for an
additional shear mode term by deriving a statement of
the conservation of vorticity directly from the vorticity
equation in the Boussinesq approximation with no as-
sumptions on viscosity. We will then demonstrate that
the H-K model as originally proposed fails to meet this
conservation condition for an inviscid fluid and for a vis-
cous fluid in steady state. Next, the sin(3z) term will be
introduced into the H-K model and we will shadow the
original analysis of Howard and Krishnamurti up through
the bifurcation leading to stable shear flow. The modified
H-K system leads to the appearance of cutoff values for
the shear mode which predict that beyond a certain elon-
gation a single R-T mode cannot generate shear in any
form. Numerical results from a study of the Boussinesq
equations will be presented as validation of the expanded
model. Finally, the vorticity dynamics inferred from the
two models is examined. The failure of the H-K model to
meet the above-mentioned conservation condition in the
viscous case results in the H-K model requiring a con-
tinuous viscous interaction with the rigid boundaries in
order to sustain its steady state.

II. MOTIVATION FOR A COMPLEMENTARY
SHEAR TERM

The dimensionless Boussinesq equations for the prob-
lem described above are

Ow 00 2
E+u-Vw—a%+0V w,
00 o 2
where w is the vorticity (w = V2¥), U is the stream

function, u the velocity field [u = (8%¥/0z, 0¥ /o)),
© the temperature perturbation away from the imposed
linear temperature gradient, o is the Prandtl number
(o0 = v/K), v is the kinematic viscosity, and « the thermal
diffusion constant. Time is scaled to AT/R, where d is
the fluid depth, AT the imposed temperature difference,
R the Rayleigh number, and R = ATgad’/vk, where a
is the thermal expansion coefficient and g is the acceler-
ation due to gravity. The boundary conditions are that
¥ and O are periodic in = with period 2d/a and that the
z boundaries are free slip, ® = ¥ = V2¥ =0 for z = 0
and z = d. We will take d = 7.

If we integrate the vorticity equation in (1) over z, uti-
lizing the periodic boundary conditions and performing
an integration by parts on the convection term, we obtain

(6]

8 = o = 82 &
a/o Wd$+5/0 uwdm—-aﬁfo wdz, (2)

where v is the z component of the velocity field. We can
likewise integrate over z to obtain the following relation
between the time rate of change of total vorticity and
the total net viscous force between the upper and lower

boundaries:
=

o [ = 8 % :
Ei/o /0 wdzdz = o [a./o wdm] . (3)

z2=0

Equation (3) is a fundamental conservation relation for
the vorticity and, indeed, for an inviscid fluid it reduces
to the conservation of total vorticity. But its derivation
here did not rely on any assumptions beyond those in
the Boussinesq approximation. Therefore any model that
intends to capture the behavior of the vorticity equations
should be consistent with it.

The original H-K model represented ¥ and © with the
following truncated Fourier series:

¥ = Asin(ox) sin(z) + Bsin(z) + C cos(aux) sin(2z),
© = D cos(ax) sin(z) + E'sin(2z) + F sin(ax) sin(2z).
(4)
So w becomes

w = —[(1 + o?)Asin(az) sin(z) + Bsin(z)
+(4 + a?)C cos(az) sin(22)]. (5)

There are two cases to consider.
Eq. (3) reduces to

o [ [ d 4n
BtA /0 wdzdz 3% a ) (6)

which vanishes only if the shear mode has a zero growth
rate. Likewise, if 0 # 0 then (3) in the steady state

becomes
8 % "
— wder| =4wB =0, (7)
0z Jo

0

First, when o = 0,

which requires that shear is absent, i.e., B = 0.

Any other consideration notwithstanding, a solution
of the H-K model in the inviscid case which results in a
growing shear mode or in the viscous case which leads to
a steady state shear mode will be inconsistent with the
physics predicted by Boussinesq equation for vorticity as
stated in (1). One is motivated then to consider adding
a term to the stream function complementary to sin(z).

As we will demonstrate, adding the term for the next
higher shear mode as suggested by Drake et al. [3],
sin(3z), maintains the essential character of the H-K
equations while more faithfully representing the under-
lying equations governing the evolution of vorticity. We
will show that the end result of adding the sin(3z) term is
that the marginal stability boundary for the shear mode
in a region of a, R, o parameter space is significantly al-
tered from that predicted by the H-K model.

III. THE MODIFIED H-K EQUATIONS

Consider the H-K model with the proposed additional
shear term
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¥ = Asin(ax)sin(z) + Bsin(z) + C cos(ax) sin(2z)
+G'sin(3z),

© = D cos(az) sin(z) + Esin(2z) + F sin(azx) sin(2z).

(8)

Substituting (8) into (1) leads to the following equations
for the Fourier coefficients:

0A 2 aocD a(3 + o?)BC
Bt = oAF AT s Y Ty )
_3a(e® —5)CG
21+ a?)
9B _ . 3aAC
ot 4
ocC acF a3AB
— = —o(4 e - -
ot = o+ )0 - s T 3t o)
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The addition of the sin(3z) shear mode results in a con-
tribution to the equations for D and F that is opposite
in sign to the contribution arising from the sin(z) term.
However, the G terms in the A and C equations have
their sign dependent on a. It is the G term in the C
equation that alters the behavior of the shear stability
boundary.

If this enhanced model is to be an improvement on the
original H-K system, it should meet the condition stated
in Eq. (3). Observe that

[—a—/a wdzjl = —27[B cos(z) + 27G cos(3z)]g
oz 0 o

= 47[B + 27G]. (10)

The steady state condition for Eq. (3) requires that
G = —B/27 which is identically what one obtains from
solving the system (9). Augmenting the H-K model with
the sin(3z) term therefore gives us an improved model,
i.e., one that is now consistent with the prediction of the
behavior of total vorticity.

Linearizing Eqgs. (9) about the A = B =C =D =
FE = F = G = 0 critical point leads to an eigenvalue prob-

lem that is separable into two disjoint subspaces: that
spanned by the so-called Lorenz components with ampli-
tudes A, D, and F, and that spanned by the remaining
terms. There are two possible bifurcations that arise in
the Lorenz space. Ome occurs at Ry = (4 + a?)3/a?,
which corresponds to the appearance of the second ver-
tical mode of the R-T instability. This mode is incom-
pletely represented in the model and not relevant to this
study. The second bifurcation is a pitchfork type at
R. = (1 + a?®)3/a2, which heralds the first horizontal
mode of the R-T instability. The amplitudes for this so-
lution are

A=+ 22 RTE,

(1 + az)

D= iMMR—RC, (11)

E =R- Rc,

where the upper or lower sign determines the handedness
of the convective cells.

Linearizing Eqs. (9) about these solutions with the
non-Lorenz amplitudes set to zero again results in a de-
coupled problem. The solution confined to the Lorenz
subspace can experience a Hopf bifurcation at Rg =
R.olo + 4/(1 + a?) + 3]/[oc — 4/(1 + &?) — 1] provided
Rp > R.. This condition requires that o > 1+4/(1+a?),
limiting its occurrence to a region of parameter space
about which we will not be concerned.

The results thus far are the same as obtained with the
H-K model. However, the sin(3z) term does play a role
in the pitchfork bifurcation that takes solution (11) out
of the Lorenz subspace and leads to nonzero shear. The
eigenvalue problem in the non-Lorenz subspace results in
a quartic equation that yields a zero eigenvalue if R = R*,
where

2
R o2 %ET)F ol JH:;_(O;%;_—_?;—‘I) 2)
RC 0%+ o0 4 2(4+a?)(5a%—4)

3(1+a2)?

Contrasting (12) to the result based on the H-K model,
we see that the coefficient of o is 10/3 versus 3 and the o
independent terms contain 2(5a2—4)/3 as a factor versus
a?. For large values of o, R* becomes dependent only on
o and (12) converges to the H-K result of 1 as a — oo.
For large values of o, the constant term where the minus
sign has been introduced becomes unimportant and the
behavior of R* is unaffected by the sin(3z) term over
most of the range of a. However, for a and o of order
unity, dramatic differences can appear as a consequence
of the fact that the denominator of R* can now vanish.
Since R* o« R., R* — oo as @ — 0 in both the H-K
and modified H-K results. However, now asymptotes can
develop for a > 0. These values, «(,), are cutoff values
for the steady shear state since, for values of a < a,(0),
R*/R. < 1 and the bifurcation to shear arising out of
the R-T state no longer takes place. Figure 2 shows a
plot of a,(c) and indicates that cutoff values exist for
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FIG. 2. Shear cutoff values a, as a function of o.

0 < o < 2. In the limit ¢ — 0, o, = v/0.8. Finn et al.
[4] arrived at this same result via a perturbation analysis
of the linearized, isothermal, viscous Navier-Stokes equa-
tion and using a four-component model similar to (8) for
the stream function. For the sake of completeness, we
note here that the cases 0 = 0 and ¢ — 0 produce quite
different results, as observed by Finn and his co-workers.
In the case 0 = 0, the characteristic equation for the
non-Lorenz, linear subspace of (9) yields a zero eigen-
value for all values of . However, a second eigenvalue
passes through zero at o = 2 leading to a growing shear
mode for a > 2.

Comparative values for R, and R* for the H-K and the
enhanced H-K models are shown in Figs. 3 and 4 for o =
1 and o = 0.1. The asymptotes for R* here occur at oy =
0.54 and a, = 0.86, respectively. The additional shear
term appears to only have the effect of shifting the R*
curve for o = 1, but the presence of a cutoff value is very
evident for 0 = 0.1. As o increases, the R* curve shifts
upward and the vertical asymptote moves towards o = 0.
As o decreases, the R* curve moves downward towards
the limit of R, while the vertical asymptote moves right
toward the limiting value o, = V0.8.

It was observed in numerical studies conducted by
Drake et al. [3] and Finn et al. [4] that the growth rate for
the shear mode had a viscous dependence for moderate o
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FIG. 3. R. (solid) and R* (dots) for the modified H-K
model and the basic H-K model (dot-dash) for o = 1.
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FIG. 4. R. (solid) and R* (dots) for the modified H-K
model and the basic H-K model (dot-dash) for o = 0.1.

(=~ 2) while being inviscid for larger a (= 4). These ob-
servations can be interpreted in terms of the dynamics of
the R* curve as o varies. In their work, R was fixed. As o
increases, the R* curve will approach that fixed value of
R from below and eventually suppress the shear mode.
As o decreases, a larger a mode will enjoy its growing
distance from the R* curve as that stability boundary
falls to R., increasing that mode’s shear growth rate. A
smaller a mode, on the other hand, cannot sustain an in-
creasing growth rate since as the R* curve falls away the
asymptote at a, moves in from the right, approaching
that smaller o value.

IV. NUMERICAL STUDY

To validate the predictions from our modified H-K sys-
tem of equations we have numerically solved the original
dimensionless Boussinesq system [Eq. (1)] in two dimen-
sions. This original set of equations is a very high-order
system since the number of grid points used in the  and
z directions was typically n, = 31 and n, = 31, respec-
tively.

The objective of our numerical study of the Boussinesq
equations was to confirm the existence of a nonzero cut-
off value for o whose existence is predicted in our mod-
ified H-K model. To this end we sought to isolate this
effect in parameter space, as far as possible away from
the onset of higher-order horizontal modes. We chose a
value of ¢ = 0.1 and the region near a = 1 since here
there appears a large region where the H-K model pre-
dicts steady shear, the modified model predicts no shear,
and only the first horizontal mode (o mode) is present.
Figure 5 depicts the curves for the critical values for the
onset of the first and second horizontal modes (2a mode)
and the a-mode steady shear state along with the H-K
value of R*. There is a triangular area bounded by the
2 mode on the left, the a-mode shear on the right, and
the a mode below. Here the modified H-K model pre-
dicts only the o mode and no shear while the H-K model
would predict shear arising from the a mode throughout
this region. We did not attempt to rigorously determine
the precise location of the stability boundaries but we
sought to qualitatively demonstrate that the asymptotes
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FIG. 5. R, for the a mode (solid) and 2a mode (dashes)
and R* for the modified H-K model (dots) and the basic H-K
model (dot-dash) for o = 0.1.
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FIG. 6. Contour plot of the stream function ¥ and the
vorticity w for o = 0.1, a = 1.1, R = 15, t = 500.
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FIG. 7. Plot of the amplitude of the sin(z) Fourier com-
ponent of the vorticity w versus time for ¢ = 0.1, a = 1,
R = 50.
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FIG. 8. Plot of the amplitude of the sin(z) Fourier com-
ponent of the vorticity w versus time for o = 0.1, o = 0.4,
R =15.

predicted by the modified H-K system are present.

We numerically integrated the system of equations (1)
utilizing a leap-frog trapezoidal finite differencing scheme
[10] in conjunction with a hyperviscosity term to stabilize
the code [11]. Runs were made along a =1 and a = 1.1
over the range 8.5 < R < 50. R = 8.5 is below the critical
value for the R-T mode at a = 1.1 and for that value all
initial perturbations were found to damp monotonically.
Shear begins to appear at R = 9.5 and by R = 15 is
strongly present as seen in the contours for the stream
and vorticity functions as shown in Fig. 6. R = 50 is
actually above the critical value for the 2a-mode but the
first mode is seen to dominate. For a slightly elongated
aspect ratio, @ = 1, the small shear perturbation used to
seed the runs is fully damped within a single oscillation
for R values up to 50 as can be seen in Fig. 7.

Next, R was fixed at a value of 15 and runs were made
at a values of 0.9, 0.8, 0.5, and 0.4. The initial shear
perturbation damped fully through a = 0.5 and only the
first R-T mode appears. At a = 0.4, the 2a mode goes
unstable and dominates the & mode. Since we are above
the R* value for the 2a mode, shear appears as seen in
Fig. 8.

V. COMPARISON OF VORTICITY DYNAMICS
BETWEEN H-K AND ENHANCED H-K MODELS

We saw in Sec. II that the original H-K model was not
consistent with a prediction arising from the vorticity
equation in any domain of parameter space. One would
then expect that the physics inferred from the H-K model
may be suspect. Let us compare the steady state behav-
ior of the vorticity as predicted by H-K and modified H-K
models. We will use the notation

(...)=%A%...dm (13)

to indicate an z-averaged value and we will take the
steady state values of the Fourier coefficients from the
solution of Egs. (9).

We begin by observing that in Fig. 9 the shape of the
equilibrium distribution of (w) as predicted by the two
models differs substantially. Here, at steady state,

(w) = —aBlsin(z) — sin(3z) /3],

(w)uk = —aBuk sin(z). (14)
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FIG. 9. z-averaged vorticity (w) at equilibrium for the
modified H-K model (dots) and the basic H-K model (solid).

We have normalized the absolute value of the ampli-
tude in each case to 1 since it is the behavior of the si-
nusoidal shaping factor in which we are interested. Note
that the sign of the vorticity could be either + or — and
without loss of generality it is shown as positive with all
of the following figures consistent with this choice of sign.
The modified H-K model predicts the development of a
boundary layer of low vorticity at the hard boundaries
while the H-K model has a nonzero z derivative of (w)
right up to the wall. Figure 10 is a diagnostic plot of
(w) as a function of z taken from one of the numerical
simulations. It clearly confirms the existence of the pre-
dicted boundary layer. We should mention that another
diagnostic which computed the right-hand side of Eq. (3)
turned out to be an excellent indicator of the steady state
during our runs.

Equation (3) requires that the z derivative of (w) either
vanish at each of the hard boundaries or have the same
nonzero value at each wall. The modified H-K model
meets the criteria by having a vanishing derivative at
the walls. The H-K model fails because it has nonzero
derivatives of equal absolute value but opposite sign at
the walls. The only remaining alternative would be a
model that meets condition (3) by having nonzero deriva-
tives at the walls that sum to zero, and that would require
that (w) vanish somewhere in the interior of 0 < 2z < 7
with (w) having opposite signs in the vicinity of opposite
walls.

The fact that the net viscous force transferred to a
wall along the z direction is 00{(w)/dz indicates that in
achieving an equilibrium state the H-K model relies on
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FIG. 10. z-averaged vorticity (w) for o0 = 0.1, o = 1.1,
R = 50.
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FIG. 11. Diffusive (solid) and convective (dots) contribu-
tions to the z-averaged vorticity at equilibrium for the basic
H-K model.

continuous viscous interaction with the walls. Observe
that Eq. (2) can equivalently be written as
o o 2
W) = = oo () + o (). (15)
The convective term is
2
(o) = 32 AC [ o5(2) — cos(32)] (16)

4

for both the original and modified H-K models. Fig-
ures 11 and 12 show the convective and diffusive contri-
butions to the steady state for the two models, where
again we have normalized the amplitude to 1. In the
modified H-K model each mechanism is conservative over
all z, that is, the signed area under each curve sums to
zero. On the other hand, since the H-K model does not
satisfy (15) in the steady state, it requires an anomalous
mechanism to achieve it, to wit, the viscous interaction
with the wall serving as a steady vorticity sink. This
can be seen in Fig. 11. Here, the convective contribu-
tion sums to zero while the net diffusive contribution is
negative.

6
o<w> |
ot
-6 L 1
0 T

FIG. 12. Diffusive (solid) and convective (dots) contribu-
tions to the z-averaged vorticity at equilibrium for the modi-
fied H-K model.
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VI. SUMMARY

The original truncated Fourier model as proposed
by Howard and Krishnamurti for studying the two-
dimensional shear problem has served admirably and the
purpose here is not to denigrate that contribution. Re-
cent numerical studies indicate that the inclusion of the
additional sin(3z) shear term is required if the H-K model
is to match observed behavior. It is therefore important
to fully appreciate the limitations of the H-K model ab-
sent this term.

First, and perhaps foremost, the original H-K model
does not meet a basic steady state criterion derived di-
rectly from the Boussinesq equation for vorticity. The
result is that the physics inferred from the H-K model
is degenerate. This degeneracy exists for the entire pa-
rameter domain. As we saw in Sec. VI, the H-K model
requires that the rigid boundaries act as a constant vor-
ticity sink at steady state. The modified model with the
additional shear term has no such degeneracy.

Adding the higher-order shear mode term to the H-K
system has a dramatic effect on the stability boundary for
the steady shear state, although admittedly the drama is
limited to a restricted region of parameter space. How-
ever, a researcher embarking on the study of shear flow
using the H-K model with small a should be aware that
neglecting the sin(3z) shear term may seriously affect the
results. For low R we have shown that the impact of
the sin(3z) term occurs well before the onset of the next
higher horizontal mode.

Awareness of the above limitations of the basic H-K
model will hopefully serve to guide its users to an appro-
priate domain of validity and alert them to the implicit
physical process that it embodies.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy.

[1] L. N. Howard and R. Krishnamurti, J. Fluid Mech. 170,
385 (1986).

[2] R. Krishnamurti and L. N. Howard, Proc. Nat. Acad. Sci.
U.S.A. 78, 1981 (1981).

[3] J. F. Drake, J. M. Finn, P. Guzdar, V. Shapiro, V.
Schevchenko, F. Waelbroeck, A. B. Hassam, C. S. Liu,
and R. Z. Sagdeev, Phys. Fluids B 4, 488 (1992).

[4] J. M. Finn, J. F. Drake, and P. N. Guzdar, Phys. Fluids
B 4, 2758 (1992).

[5] G. A. Ginet and R. N. Sudan, Phys. Fluids 30, 1667
(1987).

[6] S. R. Lantz, Ph.D. thesis, Cornell University, 1992.

[7] D. W. Hughes and M. R. E. Proctor, Nonlinearity 3, 127
(1990).

[8] A. M. Rucklidge and P. C. Mathews, Theory of Solar and
Planetary Dynamos (Cambridge University Press, Cam-
bridge, 1993), p. 257.

[9] P. C. Mathews, M. R. E. Proctor, A. M. Rucklidge, and
N. O. Weiss, Phys. Lett. A 183, 69 (1993).

[10] Y. Kurihara, Mon. Weather Rev. 93, 13 (1965).
[11] P. N. Guzdar, J. F. Drake, D. McCarthy, A. B. Hassam,
and C. S. Liu, Phys. Fluids B 5, 3712 (1993).



